Myocardial infarction accelerates atherosclerosis

Partha Dutta1*, Gabriel Courties1*, Ying Wei2, Florian Leuschner3-5, Rostic Gorbatov1, Clinton S. Robbins1, Yosihiko Iwamoto1, Brian Thompson1, Alicia L. Carlson1, Timo Heidt1, Maulik D. Majmudar1, Felix Lasitschka3, Martin Ettzrod1, Peter Waterman1, Michael T. Waring6,7, Adam T. Chicoine6,7, Anja M. van der Laan8, Hans W. M. Niessen9, Jan J. Piek8, Barry B. Rubin10, Jagdish Butany11, James R. Stone1,12, Hugo A. Katus3, Sabina A. Murphy13, David A. Morrow13, Marc S. Sabatine13, Claudio Vinegoni1, Michael A. Moskowitz2, Mikael J. Pittet1, Peter Libby4, Charles P. Lin1, Filip K. Swirski1, Ralph Weissleder1,14 & Matthias Nahrendorf1

During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischaemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, Apoe−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. Seeking the source of surplus monocytes in plaques, we found that myocardial infarction liberated haematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signalling. The progenitors then seeded the spleen, yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.

Today, survival after a first myocardial infarction (MI) approaches 90%. However, re-infarction occurs commonly and has a high mortality. In a representative trial, new myocardial ischaemia occurred in 54% of patients within the first year after MI. The largest population study so far showed a 17.4% 1-year risk of re-infarction. Conventional wisdom infers that these very high rates of secondary events reflect later stages of linear disease progression. This study tested the alternative hypothesis that a first infarct—triggering a burst of acute systemic inflammation aimed at repair of the injured heart—could accelerate atherosclerosis.

Monocytes infiltrate lesions and, together with their lineage-descendant macrophages, instigate inflammation and deliver proteolytic enzymes that digest extracellular matrix and render atherosclerotic plaques unstable6–7. Elevated levels of circulating monocytes provide an expanded pool of inflammatory cells available for recruitment to growing arterial lesions, potentially promoting plaque rupture. Leukocytosis after MI predicts an increased risk of re-infarction and death8,9. During acute MI, blood monocyte levels spike, and these cells accumulate in the evolving myocardial wound10,11. Thus, the organism experiences an acute inflammatory event (for example, MI) superimposed on a pre-existing chronic inflammatory disease (atherosclerosis), both of which involve the same myeloid cell type. Given the frequency of re-infarction, we investigated whether acute myocardial injury accelerates pre-existing chronic atherosclerosis.

We found that in Apoe−/− mice with atherosclerosis, MI increased plaque size and induced a ‘vulnerable’ lesion morphology with higher inflammatory cell content and protease activity, fuelled by persistently increased myeloid cell flux to atherosclerotic sites. Earlier clinical studies described an increase of haematopoietic stem and progenitor cells (HSPCs) in the circulation of patients shortly after MI2,12. We thus proposed that release of these progenitors may increase the availability of monocytes. We found that in response to heightened sympathetic nervous system (SNS) activity—provoked by pain, anxiety and heart failure in patients with MI—HSPCs departed bone marrow niches and produced prolonged amplified extramedullary monocytopoiesis in mice after coronary ligation.

MI accelerates atherosclerosis

Proteases, including metalloproteinases and cysteinyl cathepsins, can catalyze the extracellular matrix of the plaque’s fibrous cap and render it prone to rupture3,4,14. Therefore, protease activity may serve as a marker in mice of processes associated with lesion vulnerability in humans15. To test the hypothesis that MI changes the course of atherosclerotic disease, we serially imaged protease activity in aortic plaques of Apoe−/− mice, before and 3 weeks after coronary ligation, using hybrid fluorescence molecular tomography–X-ray computed tomography (FMT–CT)16. Imaging showed a sharp increase of plaque protease activity within 3 weeks after MI (Fig. 1a, b). In parallel,
expression of the inflammatory cytokine interleukin-6 (Il6), Mmp9, myeloperoxidase and Ly-6C (also known as Ly6cI) increased in atherosclerotic plaques (Supplementary Fig. 1). The number of monocytes and macrophages per aorta increased, particularly the inflammatory Ly-6C^{high} monocyte subset (Fig. 1c). Plaque monocyte content also increased in Apoe^{−/−} mice without MI, reflecting the natural course of disease in these animals^{17,18}. Yet innate immune cell accumulation accelerated distinctively after MI, as indicated by the significantly greater slope obtained when fitting the number of Ly-6C^{high} monocytes in the aorta over time (Supplementary Fig. 2). Neutrophil presence in atheromata also increased (Supplementary Fig. 3) whereas mast cells did not (Supplementary Fig. 4). Histological analysis affirmed increased accumulation of CD11b⁺ myeloid cells and larger lesion size after MI (Fig. 1d). The thickness of the fibrous cap decreased, covering larger necrotic cores (Supplementary Fig. 5). Ly-6C^{high} monocytes isolated from atherosclerotic lesions exhibited higher levels of messenger RNAs encoding inflammatory genes, Il1b and cathepsin B were expressed at higher levels 3 weeks after MI, whereas arginase (Arg1) and TGF-β, markers associated with alternatively activated macrophages, were expressed at lower levels (Supplementary Fig. 6). Monocyte numbers in the blood and spleen increased consistently for up to 3 months after coronary ligation (Supplementary Fig. 7) but were unaltered in the bone marrow (Supplementary Fig. 8).

Extramedullary monocytogenesis after MI

Because the spleen has the ability to host extramedullary haematopoiesis^{19–21}, we measured splenic monocyte progenitor content in mice after MI. Haematopoietic progenitor cell numbers in the spleen increased after MI (Fig. 2 and Supplementary Fig. 9) but not in the bone marrow (Supplementary Fig. 10). Proliferation of progenitors doubled in the spleen (Supplementary Fig. 11). In patients who died after an acute MI, we found increased numbers of c-kit⁺ cells in the spleen, some of which co-localized with the proliferation marker Ki-67 (Supplementary Fig. 12).

When we splenectomized mice at the time of MI, atherosclerosis did not accelerate (Supplementary Fig. 13). The number of progenitor cells in liver tissue after MI was much lower than in the spleen; however, splenectomy increased progenitor cell presence in the liver 4 days after MI (Supplementary Fig. 14). We concluded that the infarct-induced monocytosis resulted primarily from augmented production in the spleen, but that other extramedullary sites may contribute²². This observation raised the question whether monocytes of splenic and bone marrow origin differ qualitatively. Surprisingly, Ly-6C^{high} monocytes isolated from the spleen or bone marrow on day 4 after MI had significantly different mRNA levels in 11 of the 32 genes assessed (Supplementary Fig. 15). For instance, Il1b and cathepsin B mRNA levels were 60- and 6-fold higher in inflammatory monocytes isolated from the spleen, matching the increased expression of these genes in Ly-6C^{high} monocytes isolated from atherosclerotic plaques after MI (Supplementary Fig. 6). Therefore, post-MI extramedullary myelopoiesis may not only increase the availability of inflammatory cells but also change their functional program. To test whether another form of acute tissue injury prevalent in atherosclerotic patients would accelerate splenic myelopoiesis, we analysed Apoe^{−/−} mice 6 weeks after ischaemic stroke. The number of myeloid cells and Ly-6C^{high} monocytes in atherosclerotic plaques increased after stroke, in parallel with expanded splenic monocytogenesis (Supplementary Fig. 16).
Bone marrow HSPC release after MI

As granulocyte macrophage progenitors (GMPs) and macrophage dendritic cell progenitors (MDPs) have a limited self-renewal capacity\(^23\), we tested whether upstream progenitors released from their bone marrow niches sustain the splenic proliferative activity after MI. Indeed, blood levels of HSPCs increased 2-, 7- and 24-fold at 6, 48 and 96 h after MI, respectively (Fig. 3a). The number of splenic Flk2\(^-\) HSPCs increased markedly after MI (Supplementary Fig. 17). This mobilization of upstream HSPCs with high capacity for self-renewal probably explains the long-term boost in splenic monocyte production in Apoe\(^-/-\) mice after MI.

Anxiety, pain and impaired left ventricular function during MI can all activate the SNS. Accordingly, levels of tyrosine hydroxylase, the rate-limiting enzyme for production of noradrenaline in sympathetic fibres\(^25\), increased in the bone marrow of mice after MI and hence indicated a higher sympathetic tone (Fig. 3b). SNS activity may liberate haematopoietic stem cells from their niches by signalling through the \(\beta_2\)-adrenoceptor\(^26\). Nestin\(^*\) mesenchymal stem cells express this receptor, which regulates the production of stem cell retention factors\(^27\). Because acute MI raises blood progenitor levels in patients\(^3\), we investigated whether SNS activity causes the release of HSPCs from the bone marrow after MI. Blood HSPCs decreased by 100, 75 and 50% at 6, 48 and 96 h after MI in mice treated with a \(\beta_2\)-adrenoceptor antagonist (Fig. 3a). The stem cell retention factor Cxcl12, angiopoietin and stem cell factor (Scf; also known as Kitl\(^28\)) underwent similar regulation (Fig. 3c). Levels of the adhesion molecule Vcam1, which also retains HSPCs in the bone marrow, decreased after MI but did not change after \(\beta_2\)-adrenoceptor blocker administration (Fig. 3c). These data indicate that increased sympathetic tone after MI causes withdrawal of stem cell retention factors by \(\beta_2\)-adrenoceptor-expressing niche cells.

Treatment with a \(\beta_2\)-adrenoceptor blocker reduced splenic accumulation of progenitors in wild-type mice shortly after MI (Supplementary Fig. 18) and consequently diminished their output of myeloid cells (Supplementary Fig. 19). In Apoe\(^-/-\) mice 3 weeks after MI, \(\beta_2\)-blocker treatment reduced the number of GMPs and their progeny in the spleen and blood (Supplementary Fig. 20). Retrospective analysis of a clinical trial\(^29\) revealed that prior \(\beta\)-blocker therapy was associated with a reduction in monocytes after an acute coronary syndrome (Supplementary Table 1). The mechanism that led to this decrease is unclear, also because some clinically used \(\beta\)-blockers have a lower affinity for the \(\beta_2\)-adrenoceptor subtype\(^30\); however, these associative data show an interesting parallel to our findings in mice.

In Apoe\(^-/-\) mice after MI, \(\beta_2\)-blocker treatment lowered protease activity, myeloid cell content, and mRNA levels of inflammatory cytokines in the plaque (Supplementary Fig. 21). When we adoptively transferred GFP\(^+\) GMPs to wild-type mice with MI, \(\beta_2\)-blocker treatment did not alter their splenic differentiation (Supplementary Fig. 22). Sympathetic denervation with 6-hydroxydopamine (6-OHDA)\(^30,31\) increased bone marrow mRNA levels of the stem cell retention factor Cxcl12, reduced levels of HSPCs in blood, decreased circulating monocyte levels, and attenuated the accumulation of myeloid cells in atherosclerotic lesions (Supplementary Fig. 23). Combination of \(\beta_3\) blockade and splenectomy showed no additive effects (Supplementary Fig. 24). Neither MI nor \(\beta_2\) blockade changed blood cholesterol and high-density lipoprotein levels (Supplementary Fig. 25).

Intravital microscopy of HSPC departure

We adoptively transferred lineage\(^-\) c-kit\(^+\) Sca-1\(^+\) Flk2\(^-\) (Sca1 also known as Ly6a) HSPCs labelled with a fluorescent membrane dye (DiD) to examine their release with serial intravital microscopy.
Splenic HSPC engraftment after MI

Finally, we investigated the mechanisms of splenic progenitor seeding. The mRNA levels of Scf increased in splenic tissue after MI in parallel with the number of SCF− cells in splenic sections (Fig. 5a, b). Antibody neutralization of SCF decreased retention of adoptively transferred HSPCs in the spleen and proliferation of host HSPCs (Fig. 5c, d). Co-localization studies identified CD31+ and occasionally nestin+ cells (Supplementary Fig. 28a, b) as a source of SCF, in agreement with a recent report on the role of SCF in the steady state35. We found adoptively transferred DiD+ HSPCs in close vicinity to CD31+ cells (Supplementary Fig. 28c). Neutralization of VLA-4 (also known as (Ig4a4), an integrin involved in stem cell retention35,35, reduced the number of adaptively transferred HSPCs in the spleen after MI, but not in the steady state (Supplementary Fig. 29).

Discussion

We have shown that acute MI or stroke increases inflammation in atherosclerotic plaques at a distance. After an ischaemic event, atherosclerotic plaques grew faster and displayed higher protease activity. We identified an increased supply of innate immune cells as a driving force for this phenomenon. On a systems level, pre-existing chronic inflammation flared when mice experienced an additional acute inflammatory stimulus. Increased SNS activity after MI released upstream progenitors from bone marrow niches. On the receiving end, the spleen hosted these cells by increasing SCF production, leading to amplified extramedullary myelopoiesis (Fig. 5e). The pro-inflammatory changes in atherosclerotic plaques persisted for several months.

The evolutionary benefit of outsourcing myelopoiesis from the bone marrow may involve the protection of steady state ‘housekeeping’ in this confined compartment. Unlike the bone marrow, the spleen is an organ that can rapidly expand in size. In the event of increased leukocyte need after acute injury, the myelopoietic system may proliferate in extramedullary sites to protect quiescent stem cells and to ensure unimpeded production of red cells, platelets and lymphocytes in the bone marrow.

Despite growing understanding of the chronic inflammatory nature of atherosclerosis3,6,7, specific anti-inflammatory therapy has yet to materialize. Given the central role of myeloid cells in disease promotion and their rapid turnover in inflamed tissue, interrupting the monocyte supply chain may attenuate atherosclerosis. In this case, SNS inhibition abrogated stem cell release from the bone marrow. Because the regulation of progenitor cell migration is multifactorial35, there are other targets along this pathway that await exploration, including chemokine receptors and cytokines involved in stem cell activation. In addition, the innate immune response unleashed by acute ischaemic injury may also change the ‘fluid phase’ of blood by augmenting circulating acute phase reactants such as fibrinogen and...
plasminogen activator inhibitor 1, factors that promote thrombosis and counter endogenous fibrinolysis. Our study suggests that patients with an ischaemic complication of atherosclerosis experience a particularly vulnerable disease phase, and that interventions aimed at progenitors of innate immune cells could affect long-term outcomes.

METHODS SUMMARY

Wild-type C57BL/6J, C57BL/6 SJl, C57BL/6-Tg(UBC-GFP)30Scha/J and B6.129P2-Apoem1Unc/J mice were used in these studies, which were approved by the Subcommittee on Animal Research Care at Massachusetts General Hospital. The patient studies were conducted in accordance with the Declaration of Helsinki. The studies were approved by the Research Committee of the Department of Pathology of the VUmc and by the Ethikkomission Zentrale. The patients were included and studied in accordance with the Declaration of Helsinki. The studies were approved by the Research Committee of the Department of Pathology of the VUmc and by the Ethikkomission Zentrale.

Received 12 December 2011; accepted 25 May 2012.

B6.129P2-Apoem1Unc/J mice were used in these studies, which were approved by the Subcommittee on Animal Research Care at Massachusetts General Hospital. The patient studies were conducted in accordance with the Declaration of Helsinki. The studies were approved by the Research Committee of the Department of Pathology of the VUmc and by the Ethikkomission Zentrale. The patients were included and studied in accordance with the Declaration of Helsinki. The studies were approved by the Research Committee of the Department of Pathology of the VUmc and by the Ethikkomission Zentrale.

C57BL/6J, C57BL/6 SJl, C57BL/6-Tg(UBC-GFP)30Scha/J and B6.129P2-Apoem1Unc/J mice were used in these studies, which were approved by the Subcommittee on Animal Research Care at Massachusetts General Hospital. The patient studies were conducted in accordance with the Declaration of Helsinki. The studies were approved by the Research Committee of the Department of Pathology of the VUmc and by the Ethikkomission Zentrale. The patients were included and studied in accordance with the Declaration of Helsinki. The studies were approved by the Research Committee of the Department of Pathology of the VUmc and by the Ethikkomission Zentrale.

Acknowledgements We thank the CSB Mouse Imaging Program (J. Truelove, D. Jeon, J. Donahoe, B. Marimelli) and K. Naxerova for helpful discussions. This work was funded by grants from the National Institute of Health R01-HL096576, R01-HL095629 (M.N.); R01-EB006432, T32-CA79443, P50-CA086355 (R.W.). F.L. was funded in part by Deutsche Forschungsgemeinschaft SFB 938/22. Fig. 5e was produced using Servier Medical Art (http://www.servier.com).

Author Contributions P.D. and G.C. performed experiments, collected and analysed the data, and contributed to writing the manuscript. R.G. did surgeries and performed experiments, Y.W., F.L., R.G., C.S.R., Y.I., B.T., A.L.C., T.H., M.D.M., F.La., M.E., P.W., M.T.W., A.T.C., A.M.V.d.L., H.W.M.N., J.J.P., B.B.R., J.B., J.R.S., H.A.K., C.V., S.A.M., D.A.M. and M.S.S. designed and managed the study and wrote the manuscript, which was edited and approved by all co-authors.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare competing financial interests: details accompany the full-text HTML version of the paper at www.nature.com/nature. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to M.N. (mnahrendorf@mgh.harvard.edu) or R.W. (rweissleder@mgh.harvard.edu).